Report: Report: www.royalsociety.org # Open communication of data: the source of a scientific revolution and of scientific progress **Henry Oldenburg** "It is therefore thought fit to employ the [printing] press, as the most proper way to gratify those [who] . . . delight in the advancement of Learning and profitable Discoveries [and who are] invited and encouraged to search, try, and find out new things, impart their knowledge to one another, and contribute what they can to the Grand Design of improving Natural Knowledge for the Glory of God . . . and the Universal Good of Mankind." how do we achieve these ends in the post-Gutenberg era, when massive digital acquisition and cyber space have replaced the printing press? ### Problems & opportunities in the data deluge ## The challenges & opportunities? - Closing the concept-data gap maintaining scientific self-correction & credibility - Exploiting the data deluge & computational potential - Combating fraud - Addressing planetary challenges - Supporting citizen science - Responding to citizens' demands for evidence - Restraining the "Database State" ## A crisis of replicability and of the credibility of science? #### NATURE | VOL 483 | 29 MARCH 2012 #### REPRODUCIBILITY OF RESEARCH FINDINGS Preclinical research generates many secondary publications, even when results cannot be reproduced. | Journal
impact factor | Number of
articles | Mean number of citations of non-reproduced articles* | Mean number of citations of
reproduced articles | |--------------------------|-----------------------|--|--| | >20 | 21 | 248 (range 3–800) | 231 (range 82–519) | | 5–19 | 32 | 169 (range 6–1,909) | 13 (range 3–24) | Results from ten-year retrospective analysis of experiments performed prospectively. The term 'non-reproduced' was assigned on the basis of findings not being sufficiently robust to drive a drug-development programme. *Source of citations: Google Scholar, May 2011. The data providing the evidence for a published concept MUST be concurrently published, together with the metadata ## Challenges & opportunities? - Closing the concept-data gap maintaining scientific self-correction & credibility - Exploiting the data deluge & computational potential data sharing - Combating fraud - Addressing planetary challenges - Supporting citizen science - Responding to citizens' demands for evidence - Restraining the "Database State" ## Proven benefit so that data sharing becomes embedded in ethos & practice – bio-informatics ELIXIR Hub (European Bioinformatic Institute) and ELIXIR Nodes provide infrastructure for data, computing, tools, standards and training. ## New scientific knowledge from data #### E.g. the potential of linked data data integration dynamic data #### and the economic implications # Its not just curation, retrieving and integrating data – its also what we do with it! Jim Gray - "When you go and look at what scientists are doing, day in and day out, in terms of data analysis, it is truly dreadful. We are embarrassed by our data!" - Looking for inherent patterns not just the expected/hoped for - Partial reporting of data (cherry-picking) is scientific malpractice - The role of Bayesian logic ## Challenges & opportunities? - Closing the concept-data gap maintaining scientific self-correction & credibility - Exploiting the data deluge & computational potential - Combating fraud - Addressing planetary challenges - Supporting citizen science - Responding to citizens' demands for evidence - Restraining the "Database State" ## theguardian NOT ### "Scientific fraud is rife: it's time to stand up for good science" #### "Science is broken" #### **Examples:** - psychology <u>academics making up data</u>, - > anaesthesiologist Yoshitaka Fujii with 172 faked articles - > Nature rise in biomedical retraction rates overtakes rise in published papers #### Cause: Rewards and pressures promote extreme behaviours, and normalise malpractice (e.g. selective publication of positive novel findings) #### Cures: Open data for replication Transparent peer review Not just personal integrity – but system integrity ## Challenges & opportunities? - Closing the concept-data gap maintaining scientific self-correction & credibility - Maintaining the credibility of science - Exploiting the data deluge & computational potential - Combating fraud - Addressing planetary challenges - Responding to citizens' demands for evidence - Supporting citizen science - Restraining the "Database State" ## Why is open data an urgent issue? - Closing the concept-data gap - Maintaining the credibility of science - Exploiting the data deluge & computational potential - Combating fraud - Addressing planetary challenges - Responding to citizens' demands for evidence - Supporting citizen science - Restraining the "Database State" ## Why is open data an urgent issue? - Closing the concept-data gap - Maintaining the credibility of science - Exploiting the data deluge & computational potential - Combating fraud - Addressing planetary challenges - Responding to citizens' demands for evidence - Supporting citizen science the 2030 question - Restraining the "Database State" #### **Opening-up science:** e.g. crowd-sourcing ## Tim Gowers - crowd-sourced mathematics An unsolved problem posed on his blog. 32 days – 27 people – 800 substantive contributions **Emerging contributions rapidly developed or discarded** #### **Problem solved!** "Its like driving a car whilst normal research is like pushing it" What inhibits such processes? - The criteria for credit and promotion. ## Why is open data an urgent issue? - Closing the concept-data gap - Maintaining the credibility of science - Exploiting the data deluge & computational potential - Combating fraud - Addressing planetary challenges - Supporting citizen science - Responding to citizens' demands for evidence - Restraining the "Database State" # Openness of data *per se* has no value. Open science is more than disclosure For effective communication, replication and re-purposing we need **intelligent openness**. Data and meta-data must be: - Accessible - Intelligible - Assessable - Re-usable Only when these four criteria are fulfilled are data properly open Metadata must be audience-sensitive Scientific data rarely fits neatly into an EXCEL spreadsheet! #### Which publicly funded data for what purpose? #### Data supporting the argument of a published paper? simultaneous deposition of citable data #### Why should other data be open? - greater benefit to science - its not "our" data #### Who should it be intelligently open to? - other scientists - citizen scientists - the wider public #### The dilemma of choice #### **Contradictory injunctions** #### Pressure to: - commercialise, or - share, collaborate., disseminate ### **Boundaries of openness?** Openness should be the default position, with proportional exceptions for: - Legitimate commercial interests (sectoral variation) - Privacy (completely anonymised data is impossible) - Safety & security (impacts contentious) All these boundaries are fuzzy #### **Commercial interests: potential by sector** ## A data management ecology? #### Views of young scientists - The generation gap: younger researchers typically produce more data; recognise data sharing as maximising value; have most potential to develop data sharing tools; and they are the future. We should listen to them! - 1. a shift away from a research culture where data is viewed as a private preserve - 2. the data evidence for a published argument MUST be intelligently open at the time of publication - 3. data management should be embedded in the community producing and using the data - 4. science data should be as easy to "remix" as music is to a DJ - 5. replication is by far the best guarantee of preservation (e.g. LOCKSS) - 6. give credit for useful data communication and novel ways of collaborating - 7. common standards for communicating data (correct?) - 8. the cost of intelligent openness is an integral part of the cost of doing science - 9. Training and support ### Essential enabling tools & processes: #### key issues for research & implementation - data integration - supporting dynamic data - providing provenance - annotation - metadata generation - citation - access to data scientists - changing the library ### Scripts for the actors in open science Scientists – changing cultural assumptions Employers (universities/institutes)– data responsibilities; crediting researchers; the role of libraries Funders of research - the cost of curation is a cost of research Learned societies – influencing their communities Publishers of research – mandating open data; open up to data mining; be careful not to be obstacles to the progress of science Business – exploiting the opportunity; awareness & skills Government – efficiency of the science base; exploiting its data Governance processes for privacy, safety, security - proportionality #### Challenges for universities - Will they rise to the scientific challenge, or leave things to the information business? - Will they be responsible for the knowledge they create? - The university library; doing the wrong things through the wrong people? - Adapting scientific education? - Training data scientists? - Supporting the data manipulation needs of their researchers? - Supporting intelligent openness Open data and commercial imperatives #### The levels of influence #### **National** E.g. UK: Government "Transparency Boards" (Research, Business, Govt data) – chaired by Minister for Science #### <u>European</u> **DGs Connect & Research** #### **International** ICSU (International Scientific Unions) CODATA **UK-US-Chinese-Indian science academies** BUT: the science community is the driver of creative, workable, flexible solutions – the roles of the above bodies are: - 1. Remove barriers - 2. Intelligent facilitation # Challenge for the Commission as a funder of science **Top-down (present understanding)** Bottom-up (new knowledge and experiment) #### **Digital European Research Area** - 1. Developing an open, interoperable e-infrastructure - 2. Organising the European data space, through an open science policy - 3. Opening communities, engaging individuals ... and remember - science is international! ## A realiseable aspiration: all scientific literature online, all data online, and for them to interoperate ... and don't forget, this is a process, not an event! ## Report: www.royalsociety.org